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Abstract: For n ≥ 2 , let Pn , In , Tn , and Sn be the partial transformation semigroup, symmetric inverse semigroup,
(full) transformation semigroup, and symmetric group on the set Xn = {1, . . . , n} , respectively. In this paper, we find
the ranks of certain subsemigroups of Pn , In , and Tn consisting of transformations with idempotent complement whose
restrictions to the set Xm belong to the (possible) semigroup Sm , Im , Tm , or Pm for 1 ≤ m ≤ n− 1 .
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1. Introduction
For n ≥ 2 , let Pn , In , Tn , and Sn be the partial transformation semigroup, symmetric inverse semigroup,
(full) transformation semigroup, and symmetric group, on the set Xn = {1, . . . , n} , respectively.

As it is well-known from Cayley’s theorem for finite groups that every finite group is isomorphic to a
subgroup of a symmetric group Sn . Similarly, it is well-known that every finite semigroup is isomorphic to a
subsemigroup of a finite transformations semigroup Tn , and that every finite inverse semigroup is isomorphic
to a subsemigroup of a finite symmetric inverse semigroup In . Another well-known fact is the semigroup Pn

and the subsemigroup P ∗
n of the transformations semigroup consisting of all self maps on Xn ∪ {0} for which

0α = 0 are isomorphic. Hence, the importance of Tn and Pn to finite semigroup theory, and the importance of
In to finite inverse semigroup theory, may be likened to the importance of symmetric group Sn to finite group
theory. Therefore, these semigroups are important research topics for researchers and there are many studies
on these semigroups and their subsemigroups (see, for example, [3, 6, 11, 13]).

Let S be a semigroup and let ∅ 6= A ⊆ S . Then, the smallest subsemigroup of S containing A , the
semigroup consisting of all finite products of elements from A , is called the subsemigroup generated by A and
denoted by 〈A 〉 . If S is finitely generated, that is there exists a finite ∅ 6= A ⊆ S such that S = 〈A 〉 , then the
positive integer

rank (S) = min{ |A| : 〈A 〉 = S and |A| <∞}

is called the rank of S . Moreover, any generating set of S with cardinality rank (S) is called the minimal
generating set of S . The problem of finding any minimal generating set and so the rank of a semigroup, similar
to the problem of finding the dimension of a group in group theory, is an interesting and important problem for
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researchers on semigroups. Therefore, there are a lot of studies on various generating sets and ranks of certain
semigroups (see, for example, [2, 4, 8, 17]).

For α ∈ Pn , the domain, image, fix, and shift sets of α are defined as

dom (α) = {x ∈ Xn : xα = y for any y ∈ Xn},

im (α) = {y ∈ Xn : xα = y for any x ∈ dom (α)},

fix (α) = {x ∈ dom (α) : xα = x} and

shift (α) = {x ∈ dom (α) : xα 6= x} = dom (α) \ fix (α),

respectively, in common usage in semigroup theory. Moreover, for any ∅ 6= Y ⊆ Xn , let Y α = {yα : y ∈ Y } be
the image set of Y under α , and α|Y be the restriction map of α to Y . In 1966, as quoted in [10], for any
∅ 6= Y ⊆ X , Magill, in [12], investigated the semigroup of all transformations on X which leave Y invariant,
say

S(X,Y ) = {α ∈ TX : Y α ⊆ Y }.

Then many more studies have been done about this semigroup and new semigroups inspired by or defined
similarly to this semigroup (see, for example, [1, 6, 9, 10, 13–16]). In one such study, presented in [16], Toker
and Ayık considered the semigroup

T(n,m) = {α ∈ Tn : Xmα = Xm}

of Tn for 1 ≤ m ≤ n− 1 and they showed that

rank (T(n,m)) =

 2 if (n,m) = (2, 1) or (n,m) = (3, 2)
3 if (n,m) = (3, 1) or 4 ≤ n and m = n− 1
4 if 4 ≤ n and 1 ≤ m ≤ n− 2

.

Sommanee used the notation PGm(n) for T(n,m) , and obtained the rank of PGm(n) by using a different
technique in [14]. Recently, Konieczny presented some algebraic properties of the semigroup TS(Y )(X) = {α ∈
TX : α|Y ∈ S(Y )} for any subset Y of X and any subsemigroup S(Y ) of TY in [9]. Inspired by the studies
summarized above, we defined and also obtained the ranks of certain semigroups of transformations whose
restrictions are elements of a given semigroup in [4]. When we reviewed the studies on this subject, the special
subsemigroups obtained with additional restrictions of these semigroups also arused our curiosity. Now, let us
give the definitions of certain subsemigroups that will be the subject of this paper.

Let X be a nonempty set with cardinality n and let Y be a nonempty subset of X with cardinality
1 ≤ m ≤ n − 1 . Without loss of generality, we can consider the sets Xn and Xm , rather than X and Y ,
respectively. Thus, for 1 ≤ m ≤ n− 1 , let

ISf
(n,m) = {α ∈ In : α|Xm

∈ Sm; dom (α) \Xm ⊆ fix (α) },

IIf(n,m) = {α ∈ In : α|Xm
∈ Im; dom (α) \Xm ⊆ fix (α) },

PSf
(n,m) = {α ∈ Pn : α|Xm

∈ Sm; dom (α) \Xm ⊆ fix (α) },

PT f
(n,m) = {α ∈ Pn : α|Xm

∈ Tm; dom (α) \Xm ⊆ fix (α) },

P If(n,m) = {α ∈ Pn : α|Xm
∈ Im; dom (α) \Xm ⊆ fix (α) },

PP f
(n,m) = {α ∈ Pn : α|Xm

∈ Pm; dom (α) \Xm ⊆ fix (α) },
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and let
R = { ISf

(n,m), II
f
(n,m), PS

f
(n,m), PT

f
(n,m), P I

f
(n,m), PP

f
(n,m)}.

Clearly each element in R is a semigroup. We call these semigroups by semigroups of transformations with
idempotent complement whose restrictions are elements of a given semigroup. Note that, since

TSf
(n,m) = {α ∈ Tn : α|Xm

∈ Sm; dom (α) \Xm ⊆ fix (α) } ∼= Sm and

TT f
(n,m) = {α ∈ Tn : α|Xm

∈ Tm; dom (α) \Xm ⊆ fix (α) } ∼= Tm,

with the required isomorphism α 7→ α|Xm
, we exclude the semigroups TSf

(n,m) and TT f
(n,m) for 1 ≤ m ≤ n−1 .

Consequently, in this paper, we will focus on semigroups in R and we will find the rank of each of these
semigroups.

2. Preliminaries
First, we state the following well-known lemma (this lemma also stated in [4]) which is easy to prove and useful
throughout this paper.

Lemma 1 Let T be a subsemigroup of a semigroup S , and let S\T be an ideal of S . If A is a finite generating
set of S , then T ∩A is a finite generating set of T . Consequently, rank (S) > rank (T ) . □

Let α ∈ Sn with shift (α) = {a1, . . . , ar} (2 ≤ r ∈ Z+ ), aiα = ai+1 for each 1 ≤ i ≤ r−1 and arα = a1 .
In this case, α is called a cycle of length r (a r -cycle) and denoted by α = (a1 · · · ar) . In general, for any
∅ 6= Y ⊆ Xn , the identity permutation on Y is denoted by 1Y . Note that the identity permutation 1Xn

in Sn

is the unique 1 -cycle in Sn and denoted also by (1) .
Let α ∈ Tn with shift (α) = {a} and aα = b for any a, b ∈ Xn . In this case, α is denoted by α = ‖a b‖ .
Let α ∈ In with dom (α) = Xn \ {ar} , shift (α) = {a1, . . . , ar−1} for r ∈ Z+ \ {1} and aiα = ai+1 for

each 1 ≤ i ≤ r − 1 . In this case, α is called a chain of length r (a r -chain) and denoted by [a1 · · · ar] . In
particular, if dom (α) = fix (α) = X \ {a1} , then α is called a 1 -chain and denoted by [a1] .

With the notations given above, note the well known facts (see, for example, [5, 7, 11]) that

S2 = 〈(1 2)〉, T2 = 〈(1 2), ‖1 2‖〉, I2 = 〈(1 2), [1]〉 and P2 = 〈(1 2), ‖1 2‖, [1]〉,

and that for n ≥ 3 ,

Sn = 〈(1 2), (1 2 · · · n)〉, Tn = 〈(1 2), (1 2 · · · n), ‖1 2‖〉,

In = 〈(1 2), (1 2 · · · n), [1]〉 and Pn = 〈(1 2), (1 2 · · · n), ‖1 2‖, [1] 〉.

Moreover,

rank (Sn) =

{
1, n = 2
2, n ≥ 3

, rank (Tn) = rank (In) =

{
2, n = 2
3, n ≥ 3

and

rank (Pn) =

{
3, n = 2
4, n ≥ 3

.
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An element e of a semigroup S is called an idempotent if e2 = e . The set of all idempotents in any subset
U of S is denoted by E(U) . It is well known that α ∈ Pn is an idempotent if and only if α|im (α)

= 1im (α) , or
equivalently, im (α) = fix (α) . Notice that E(In) is a subsemigroup of In . Let us denote the free semilattice
on Xn by SL(Xn) which is the semigroup of the power set of Xn with usual intersection of sets. If we define
the map Φ : E(In) → SL(Xn) by αΦ = dom (α) for all α ∈ E(In) , then we see that E(In) and SL(Xn) are
isomorphic. Therefore, |E(In)| = 2n , and moreover, E(In) = 〈 1Xn

, [1], [2], . . . , [n] 〉 . Notice that SL(Xn) is
generated by {Xn, Xn1, Xn2, . . . , Xnn} where Xni = Xn \ {i} for every 1 ≤ i ≤ n . For further information on
semigroup theory and transformation semigroups, we recommend referring to, for example, [5, 7].

Now, we give some notations (similarly defined in [4]) which will be useful throughout this paper. Let S
be one of the semigroups in R . Then let

Γ(S) = {α ∈ S : α|Xn\Xm
= 1Xn\Xm

},

Γm(S) = {α ∈ S : α|Xm
= 1Xm

, and (Xn \Xm)α ⊆ Xn \Xm },

which are clearly subsemigroups of S . Moreover, for any α ∈ S , α = α
(1)
α

(2)
where α

(1)
and α

(2)
are the

maps defined by

iα
(1)

=

{
iα 1 ≤ i ≤ m
i m+ 1 ≤ i ≤ n

and

iα
(2)

=

{
i 1 ≤ i ≤ m
iα m+ 1 ≤ i ≤ n

,

respectively. Finally, for any α ∈ Pm , let α+ be the map defined by

iα+ =

{
iα 1 ≤ i ≤ m
i m+ 1 ≤ i ≤ n

,

and, for any ∅ 6= U ⊆ Pm , let U+ = {α+ : α ∈ U } .

3. Ranks of ISf
(n,m) and IIf(n,m)

It is easy to prove that

ISf
(n,m)

∼= Sm × E(IXn\Xm
) and IIf(n,m)

∼= Im × E(IXn\Xm
)

with the required isomorphism: α 7→ (α|Xm
, α|Xn\Xm

) . Then, since |Ik| =
∑n

k=0

(
n
k

)2
k! for every k ∈ Z+ , and

IXn\Xm
∼= In−m , we immediately have

|ISf
(n,m)| = m! 2n−m and |IIf(n,m)| =

(
m∑

k=0

(
m

k

)2

k!

)
2n−m.

For any α ∈ E(ISf
(n,m)) , since α|Xm

= 1Xm
and α|Xn\Xm

∈ E(IXn\Xm
) , it follows that E(ISf

(n,m))
∼=

E(IXn\Xm
) . And since E(In−m) ∼= E(IXn\Xm

) trivially, we have

|E(ISf
(n,m))| = 2n−m.
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Similarly, we have
Γ(ISf

(n,m))
∼= Sm,

Γ(IIf(n,m))
∼= Im and

Γm(ISf
(n,m)) = Γm(IIf(n,m))

∼= E(IXn\Xm
) ∼= E(In−m)

with the required isomorphisms defined as α 7→ α|Xm
, α 7→ α|Xm

and α 7→ α|Xn\Xm
, respectively.

Lemma 2 For 1 ≤ m ≤ n− 1 , IIf(n,m) \ IS
f
(n,m) is an ideal of IIf(n,m) .

Proof For any α ∈ In , it is clear that α ∈ IIf(n,m) \ IS
f
(n,m) if and only if α|Xm

∈ Im \ Sm . Furthermore, for

any γ ∈ IIf(n,m) , since (αγ)|Xm
, (γα)|Xm

∈ Im \Sm , we have αγ, γα ∈ IIf(n,m) \IS
f
(n,m) , and so IIf(n,m) \IS

f
(n,m)

is an ideal of IIf(n,m) . □

For any 1 ≤ r ≤ n , recall that the 1 -chain in In with domain Xn \ {r} is denoted by [r] . Since we are
concerned with both Im and IXn\Xm

, to avoid confusion, we write [1]m if [1] ∈ Im and [r]n,m if [r] ∈ IXn\Xm

for 1 ≤ m < r ≤ n .

Theorem 1 For 1 ≤ m ≤ n− 1 , ISf
(n,m) = 〈Γ(ISf

(n,m)) ∪ {[m+ 1], . . . , [n]}〉 , and moreover, we have

ISf
(n,1) = 〈1Xn , [2], . . . , [n]〉,

ISf
(n,2) = 〈(1 2), [3], . . . , [n]〉,

ISf
(n,m) = 〈(1 2), (12 . . .m), [m+ 1], . . . , [n]〉 for m ≥ 3.

Proof Since Γ(ISf
(n,m))

∼= Sm , it is enough to show that ISf
(n,m) = 〈Γ(ISf

(n,m)) ∪{[m+ 1], . . . , [n]}〉 . First,

notice that, adapting from the well-known generating set of the E(Ik) for any k ∈ Z+ , we have immediately
E(IXn\Xm

) = 〈1Xn\Xm
, [m+ 1]n,m, . . . , [n]n,m〉. Then, since Γm(ISf

(n,m))
∼= E(IXn\Xm

) , we have

Γm(ISf
(n,m)) = 〈1Xn

, [m+ 1], . . . , [n]〉.

For any α ∈ ISf
(n,m) , we have α = α

(1)
α

(2)
, with α

(1)
∈ Γ(ISf

(n,m)) and α
(2)

∈ Γm(ISf
(n,m)) . Therefore, since

1Xn ∈ Γ(ISf
(n,m)) , α ∈ 〈Γ(ISf

(n,m))∪ {[m+1], . . . , [n]}〉 , and so ISf
(n,m) = 〈Γ(ISf

(n,m))∪ {[m+1], . . . , [n]}〉 , as
required. □

Corollary 1 For 1 ≤ m ≤ n− 1 , we have

rank (ISf
(n,m)) =

{
n−m+ 1 for m = 1, 2
n−m+ 2 for m ≥ 3

.

Proof Let U be an arbitrary generating set of ISf
(n,m) . For any 1 ≤ i ≤ n − m , since [m + i] ∈

ISf
(n,m) = 〈U〉 , there exist σ1, . . . , σk ∈ U (k ∈ Z+) such that [m + i] = σ1 · · ·σk . Moreover, since

|im (αβ)| ≤ min{|im (α)|, |im (β)|} for all α, β ∈ Pn , we have σ1, . . . , σk ∈ Sn ∪Kn−1 where

Kn−1 = {α ∈ ISf
(n,m) : |dom (α)| = |im (α)| = n− 1},
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and there exists at least one 1 ≤ j ≤ k such that σj ∈ Kn−1 . Without loss of generality, suppose that
|dom (σl)| = n for each 1 ≤ l ≤ j−1 . Since dom (αβ) ⊆ dom (α) for all α, β ∈ Pn , and since [m+i], σj ∈ Kn−1 ,
it follows that dom (σj) = dom ([m + i]) . That is, for each 1 ≤ i ≤ n −m , there exists σj(i) ∈ U such that
dom (σj(i)) = dom ([m+ i]) = Xn \ {m+ i} . Moreover, since |dom (σj(i))| = n− 1 for each 1 ≤ i ≤ n−m , we
must have U ∩ Sn 6= ∅ . For m = 1 or m = 2 the result is clear from Theorem 1. For m ≥ 3 , since

ISf
(n,m) \ Γ(IS

f
(n,m)) = {α ∈ ISf

(n,m) : dom (α) 6= Xn}

is an ideal of ISf
(n,m) , and since Γ(ISf

(n,m))
∼= Sm , it follows from Lemma 1 that rank (ISf

(n,m)) ≥ n−m+ 2 ,
and so the result follows from Theorem 1. □

Theorem 2 For 1 ≤ m ≤ n− 1 , we have IIf(n,m) = 〈ISf
(n,m) ∪ {[1]}〉 .

Proof First, recall that Im = 〈Sm ∪ {[1]m}〉. Then, since Γ(IIf(n,m))
∼= Im , similarly we have Γ(IIf(n,m)) =

〈S+
m ∪ {[1]}〉 , where S+

m is defined as in the section Preliminaries. For any α ∈ IIf(n,m) , we have α = α
(1)
α

(2)
,

with α
(1)

∈ Γ(IIf(n,m)) and α
(2)

∈ ISf
(n,m) . Therefore, since S+

m ⊆ ISf
(n,m) , we have α ∈ 〈ISf

(n,m) ∪ {[1]}〉 , and

so IIf(n,m) = 〈ISf
(n,m) ∪ {[1]}〉 , as required. □

Corollary 2 For 1 ≤ m ≤ n− 1 , we have

rank (IIf(n,m)) =

{
n−m+ 2 for m = 1, 2
n−m+ 3 for m ≥ 3

.

Proof The result follows from Lemma 1, Lemma 2, Corollary 1, and Theorem 2. □

4. Ranks of PSf
(n,m) , PT f

(n,m) , PIf(n,m) and PP f
(n,m)

First, notice that, for each Vm ∈ {Sm, Tm, Im, Pm} ,

Γ(PV f
(n,m))

∼= Vm,

Γm(PV f
(n,m))

∼= E(IXn\Xm
)

with the required isomorphisms α 7→ α|Xm
and α 7→ α|Xn\Xm

, respectively. Now, we state a lemma which can
be proved easily with the isomorphism defined by α 7→ (α|Xm

, α|Xn\Xm
) .

Lemma 3 For 1 ≤ m ≤ n− 1 ,

PSf
(n,m) = ISf

(n,m)
∼= Sm × E(In−m),

PT f
(n,1) = PSf

(n,1) = ISf
(n,1)

∼= S1 × E(In−1) ∼= E(In−1),

PT f
(n,m)

∼= Tm × E(In−m) for m ≥ 2,

P If(n,m) = IIf(n,m)
∼= Im × E(In−m),

PP f
(n,1) = PIf(n,1) = IIf(n,1)

∼= I1 × E(In−1) and
PP f

(n,m)
∼= Pm × E(In−m) for m ≥ 2.

6
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□

For each 1 ≤ m ≤ n − 1 , since the ranks of ISf
(n,m) and IIf(n,m) are given in Corollaries 1 and 2,

respectively, we consider only the subsemigroups PT f
(n,m) and PP f

(n,m) for 2 ≤ m ≤ n− 1 .

Theorem 3 For 2 ≤ m ≤ n− 1 , we have

PT f
(n,m) = 〈PSf

(n,m) ∪ { ‖1 2‖ } 〉 and

PP f
(n,m) = 〈PT f

(n,m) ∪ { [1] } 〉 = 〈PSf
(n,m) ∪ { ‖1 2‖, [1] } 〉.

Proof First, recall that Tm = 〈Sm ∪ {‖1 2‖m}〉 and Pm = 〈Tm ∪ {[1]m}〉 . Since Γ(PT f
(n,m))

∼= Tm and

Γ(PP f
(n,m))

∼= Pm , similarly, we have

Γ(PT f
(n,m)) = 〈S+

m ∪ { ‖1 2‖ }〉 and Γ(PP f
(n,m)) = 〈T+

m ∪ { [1] }〉.

For any α ∈ PT f
(n,m) , we have α = α

(1)
α

(2)
, with α

(1)
∈ Γ(PT f

(n,m)) and α
(2)

∈ PSf
(n,m) . Since S+

m ⊆ PSf
(n,m) ,

it follows that α ∈ 〈PSf
(n,m) ∪ { ‖1 2‖ }〉 , and so PT f

(n,m) = 〈PSf
(n,m) ∪ { ‖1 2‖ }〉 .

For any α ∈ PP f
(n,m) , we have α = α

(1)
α

(2)
, with α

(1)
∈ Γ(PP f

(n,m)) and α
(2)

∈ PT f
(n,m) . Since

T+
m ⊆ PT f

(n,m) , it follows that α ∈ 〈PT f
(n,m) ∪ { [1] }〉 , and so PP f

(n,m) = 〈PT f
(n,m) ∪ { [1] }〉 . □

Lemma 4 For 1 ≤ m ≤ n− 1 ,

(i) PT f
(n,m) \ PS

f
(n,m) is an ideal of PT f

(n,m) and

(ii) PP f
(n,m) \ PS

f
(n,m) is an ideal of PP f

(n,m) .

Proof It is a routine matter to prove as in Lemma 2. □

Corollary 3 For 2 ≤ m ≤ n− 1 , we have

rank (PT f
(n,m)) =

{
n−m+ 2 for m = 2
n−m+ 3 for m ≥ 3

.

Proof The result follows from Lemma 1, Lemma 4 (i), the fact PSf
(n,m) = ISf

(n,m) , Corollary 1 and Theorem
3. □

Recall that, for any α ∈ Pn , ker(α) = {(x, y) ∈ Xn×Xn : x, y ∈ dom (α) and xα = yα or x, y /∈ dom (α)}
is an equivalence relation on Xn and the equivalence classes of ker(α) are all different preimage sets of elements
in im (α) together with Xn \ dom (α) which form a partition of Xn . Also, recall that, ker(α) ⊆ ker(αβ) for
any α, β ∈ Pn . It is easy to see that, for α ∈ Tn , if |im (α)| = n − 1 , then there exist i 6= j ∈ Xn such that
ker(α) is the equivalence relation on Xn generated by {(i, j)} which is denoted by ker(α) = {(i, j)}e .

Theorem 4 For 2 ≤ m ≤ n− 1 , if U is a generating set of PP f
(n,m) , then

7
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(i) U must contain an arbitrary generating set of PSf
(n,m) ,

(ii) there exists an element α ∈ U ∩ (PP f
(n,m) \ PT

f
(n,m)) such that |dom (α)| = |im (α)| = n− 1 ,

(iii) there exist an element β ∈ U ∩ (PT f
(n,m) \ PS

f
(n,m)) and two elements 1 ≤ i 6= j ≤ m such that

ker(β) = {i, j}e .

Proof For 1 ≤ m ≤ n− 1 , let ∅ 6= U ⊆ PP f
(n,m) be a generating set of PP f

(n,m) .

(i) From Lemmas 1 and 4 (ii), we immediately conclude that U must contain an arbitrary generating
set of PSf

(n,m) .

(ii) Consider the map [i] ∈ PP f
(n,m) for any 1 ≤ i ≤ m . Since U is a generating set of PP f

(n,m) , then

there exist σ1, . . . , σk ∈ U (k ∈ Z+ ) such that

[i] = σ1 · · ·σk.

Since |dom ([i])| = n − 1 and since dom (ψθ) = (im (ψ) ∩ dom (θ))ψ−1 for any ψ, θ ∈ Pn , there exists at least
one 1 ≤ t ≤ k such that |dom (σt)| = n − 1 . Notice also that, |im (σj)| ≥ n − 1 for each 1 ≤ j ≤ k since
|im ([i])| = n − 1 and im ([i]) = im (σ1 · · ·σk) , and so |im (σt)| = n − 1 . Therefore, there exists at least one
element α ∈ U ∩ (PP f

(n,m) \ PT
f
(n,m)) such that |dom (α)| = |im (α)| = n− 1 .

(iii) Consider the map ψ ∈ PT f
(n,m) \ PS

f
(n,m) with ker(ψ) = {i0, j0}e for any two elements 1 ≤ i0 6=

j0 ≤ m . Then there exist ω1, . . . , ωl ∈ U ( l ∈ Z+ ) such that

ψ = ω1 · · ·ωl

and n − 1 ≤ |im (ωr)| ≤ n for each 1 ≤ r ≤ l . Since ker(ω) ⊆ ker(ωθ) for any ω, θ ∈ Pn , ker(ω1) ⊆
ker(ω1 · · ·ωl) = ker(ψ) = {i0, j0}e and n− 1 ≤ |im (ωr)| ≤ n for each 1 ≤ r ≤ l , we conclude that there exists
1 ≤ s ≤ l and 1 ≤ is 6= js ≤ n such that ωs ∈ U ∩ (PT f

(n,m) \ PS
f
(n,m) ) and that ker(ωs) = {is, js}e . Without

loss of generality we can suppose that ωs is the first element in the sequence ω1, . . . , ωl satisfying this condition.
In this case also notice that ω1, . . . , ωs−1 must be in PSf

(n,m) , i0(ω1 · · ·ωs−1) 6= j0(ω1 · · ·ωs−1) , is 6= js , and
that

{i(ω1 · · ·ωs−1), j(ω1 · · ·ωs−1)} = {is, js}.

Since Xmψ ⊆ Xm then we have is, js ∈ Xm , and so there exist an element β ∈ U ∩ (PT f
(n,m) \ PS

f
(n,m)) and

two elements 1 ≤ i 6= j ≤ m such that ker(β) = {i, j}e . □

Corollary 4 For 2 ≤ m ≤ n− 1 , we have

rank (PP f
(n,m)) =

{
n−m+ 3 for m = 2
n−m+ 4 for m ≥ 3

.

Proof The result follows from the fact that PSf
(n,m) = ISf

(n,m) , Corollary 1 and Theorems 3 and 4. □
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