Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
tübitak

Turk J Math
() : -
© TÜBİTAK
doi:10.55730/1300-0098.

Ranks of certain semigroups of transformations with idempotent complement whose restrictions belong to a given semigroup

Leyla BUGAY*(D) Rukiye SÖNMEZ© ${ }^{(D)}$, Hayrullah AYIK(D)
Department of Mathematics, Çukurova University, Adana, Turkiye

Received: 11.04.2023 • Accepted/Published Online: 29.02.2024 \quad Final Version: .. 202

Abstract

For $n \geq 2$, let P_{n}, I_{n}, T_{n}, and S_{n} be the partial transformation semigroup, symmetric inverse semigroup, (full) transformation semigroup, and symmetric group on the set $X_{n}=\{1, \ldots, n\}$, respectively. In this paper, we find the ranks of certain subsemigroups of P_{n}, I_{n}, and T_{n} consisting of transformations with idempotent complement whose restrictions to the set X_{m} belong to the (possible) semigroup S_{m}, I_{m}, T_{m}, or P_{m} for $1 \leq m \leq n-1$.

Key words: Partial (full) transformation semigroup, symmetric inverse semigroup, symmetric group, idempotent, rank

1. Introduction

For $n \geq 2$, let P_{n}, I_{n}, T_{n}, and S_{n} be the partial transformation semigroup, symmetric inverse semigroup, (full) transformation semigroup, and symmetric group, on the set $X_{n}=\{1, \ldots, n\}$, respectively.

As it is well-known from Cayley's theorem for finite groups that every finite group is isomorphic to a subgroup of a symmetric group S_{n}. Similarly, it is well-known that every finite semigroup is isomorphic to a subsemigroup of a finite transformations semigroup T_{n}, and that every finite inverse semigroup is isomorphic to a subsemigroup of a finite symmetric inverse semigroup I_{n}. Another well-known fact is the semigroup P_{n} and the subsemigroup P_{n}^{*} of the transformations semigroup consisting of all self maps on $X_{n} \cup\{0\}$ for which $0 \alpha=0$ are isomorphic. Hence, the importance of T_{n} and P_{n} to finite semigroup theory, and the importance of I_{n} to finite inverse semigroup theory, may be likened to the importance of symmetric group S_{n} to finite group theory. Therefore, these semigroups are important research topics for researchers and there are many studies on these semigroups and their subsemigroups (see, for example, $[3,6,11,13]$).

Let S be a semigroup and let $\emptyset \neq A \subseteq S$. Then, the smallest subsemigroup of S containing A, the semigroup consisting of all finite products of elements from A, is called the subsemigroup generated by A and denoted by $\langle A\rangle$. If S is finitely generated, that is there exists a finite $\emptyset \neq A \subseteq S$ such that $S=\langle A\rangle$, then the positive integer

$$
\operatorname{rank}(S)=\min \{|A|:\langle A\rangle=S \text { and }|A|<\infty\}
$$

is called the rank of S. Moreover, any generating set of S with cardinality rank (S) is called the minimal generating set of S. The problem of finding any minimal generating set and so the rank of a semigroup, similar to the problem of finding the dimension of a group in group theory, is an interesting and important problem for

[^0]researchers on semigroups. Therefore, there are a lot of studies on various generating sets and ranks of certain semigroups (see, for example, $[2,4,8,17]$).

For $\alpha \in P_{n}$, the domain, image, fix, and shift sets of α are defined as

$$
\begin{aligned}
\operatorname{dom}(\alpha) & =\left\{x \in X_{n}: x \alpha=y \text { for any } y \in X_{n}\right\} \\
\operatorname{im}(\alpha) & =\left\{y \in X_{n}: x \alpha=y \text { for any } x \in \operatorname{dom}(\alpha)\right\} \\
\text { fix }(\alpha) & =\{x \in \operatorname{dom}(\alpha): x \alpha=x\} \text { and } \\
\operatorname{shift}(\alpha) & =\{x \in \operatorname{dom}(\alpha): x \alpha \neq x\}=\operatorname{dom}(\alpha) \backslash \operatorname{fix}(\alpha),
\end{aligned}
$$

respectively, in common usage in semigroup theory. Moreover, for any $\emptyset \neq Y \subseteq X_{n}$, let $Y \alpha=\{y \alpha: y \in Y\}$ be the image set of Y under α, and $\alpha_{\left.\right|_{Y}}$ be the restriction map of α to Y. In 1966, as quoted in [10], for any $\emptyset \neq Y \subseteq X$, Magill, in [12], investigated the semigroup of all transformations on X which leave Y invariant, say

$$
S(X, Y)=\left\{\alpha \in T_{X}: Y \alpha \subseteq Y\right\}
$$

Then many more studies have been done about this semigroup and new semigroups inspired by or defined similarly to this semigroup (see, for example, [1, 6, 9, 10, 13-16]). In one such study, presented in [16], Toker and Ayık considered the semigroup

$$
T_{(n, m)}=\left\{\alpha \in T_{n}: X_{m} \alpha=X_{m}\right\}
$$

of T_{n} for $1 \leq m \leq n-1$ and they showed that

$$
\operatorname{rank}\left(T_{(n, m)}\right)= \begin{cases}2 & \text { if }(n, m)=(2,1) \text { or }(n, m)=(3,2) \\ 3 & \text { if }(n, m)=(3,1) \text { or } 4 \leq n \text { and } m=n-1 \\ 4 & \text { if } 4 \leq n \text { and } 1 \leq m \leq n-2\end{cases}
$$

Sommanee used the notation $P G_{m}(n)$ for $T_{(n, m)}$, and obtained the rank of $P G_{m}(n)$ by using a different technique in [14]. Recently, Konieczny presented some algebraic properties of the semigroup $T_{\mathbb{S}(Y)}(X)=\{\alpha \in$ $\left.T_{X}: \alpha_{\left.\right|_{Y}} \in \mathbb{S}(Y)\right\}$ for any subset Y of X and any subsemigroup $\mathbb{S}(Y)$ of T_{Y} in [9]. Inspired by the studies summarized above, we defined and also obtained the ranks of certain semigroups of transformations whose restrictions are elements of a given semigroup in [4]. When we reviewed the studies on this subject, the special subsemigroups obtained with additional restrictions of these semigroups also arused our curiosity. Now, let us give the definitions of certain subsemigroups that will be the subject of this paper.

Let X be a nonempty set with cardinality n and let Y be a nonempty subset of X with cardinality $1 \leq m \leq n-1$. Without loss of generality, we can consider the sets X_{n} and X_{m}, rather than X and Y, respectively. Thus, for $1 \leq m \leq n-1$, let

$$
\begin{aligned}
I S_{(n, m)}^{f} & =\left\{\alpha \in I_{n}: \alpha_{\left.\right|_{X_{m}}} \in S_{m} ; \operatorname{dom}(\alpha) \backslash X_{m} \subseteq \operatorname{fix}(\alpha)\right\} \\
I I_{(n, m)}^{f} & =\left\{\alpha \in I_{n}: \alpha_{\left.\right|_{X_{m}}} \in I_{m} ; \operatorname{dom}(\alpha) \backslash X_{m} \subseteq \operatorname{fix}(\alpha)\right\} \\
P S_{(n, m)}^{f} & =\left\{\alpha \in P_{n}: \alpha_{\left.\right|_{X_{m}}} \in S_{m} ; \operatorname{dom}(\alpha) \backslash X_{m} \subseteq \operatorname{fix}(\alpha)\right\}, \\
P T_{(n, m)}^{f} & =\left\{\alpha \in P_{n}: \alpha_{\left.\right|_{X_{m}}} \in T_{m} ; \operatorname{dom}(\alpha) \backslash X_{m} \subseteq \operatorname{fix}(\alpha)\right\}, \\
P I_{(n, m)}^{f} & =\left\{\alpha \in P_{n}: \alpha_{\left.\right|_{X_{m}}} \in I_{m} ; \operatorname{dom}(\alpha) \backslash X_{m} \subseteq \operatorname{fix}(\alpha)\right\}, \\
P P_{(n, m)}^{f} & =\left\{\alpha \in P_{n}: \alpha_{\left.\right|_{X_{m}}} \in P_{m} ; \operatorname{dom}(\alpha) \backslash X_{m} \subseteq \operatorname{fix}(\alpha)\right\},
\end{aligned}
$$

and let

$$
\mathbf{R}=\left\{I S_{(n, m)}^{f}, I I_{(n, m)}^{f}, P S_{(n, m)}^{f}, P T_{(n, m)}^{f}, P I_{(n, m)}^{f}, P P_{(n, m)}^{f}\right\}
$$

Clearly each element in \mathbf{R} is a semigroup. We call these semigroups by semigroups of transformations with idempotent complement whose restrictions are elements of a given semigroup. Note that, since

$$
\begin{gathered}
T S_{(n, m)}^{f}=\left\{\alpha \in T_{n}: \alpha_{\left.\right|_{X_{m}}} \in S_{m} ; \operatorname{dom}(\alpha) \backslash X_{m} \subseteq \operatorname{fix}(\alpha)\right\} \cong S_{m} \text { and } \\
T T_{(n, m)}^{f}=\left\{\alpha \in T_{n}: \alpha_{\mid X_{m}} \in T_{m} ; \operatorname{dom}(\alpha) \backslash X_{m} \subseteq \operatorname{fix}(\alpha)\right\} \cong T_{m},
\end{gathered}
$$

with the required isomorphism $\alpha \mapsto \alpha_{\mid X_{m}}$, we exclude the semigroups $T S_{(n, m)}^{f}$ and $T T_{(n, m)}^{f}$ for $1 \leq m \leq n-1$. Consequently, in this paper, we will focus on semigroups in \mathbf{R} and we will find the rank of each of these semigroups.

2. Preliminaries

First, we state the following well-known lemma (this lemma also stated in [4]) which is easy to prove and useful throughout this paper.

Lemma 1 Let T be a subsemigroup of a semigroup S, and let $S \backslash T$ be an ideal of S. If A is a finite generating set of S, then $T \cap A$ is a finite generating set of T. Consequently, $\operatorname{rank}(S)>\operatorname{rank}(T)$.

Let $\alpha \in S_{n}$ with $\operatorname{shift}(\alpha)=\left\{a_{1}, \ldots, a_{r}\right\}\left(2 \leq r \in \mathbb{Z}^{+}\right), a_{i} \alpha=a_{i+1}$ for each $1 \leq i \leq r-1$ and $a_{r} \alpha=a_{1}$. In this case, α is called a cycle of length r (a r-cycle) and denoted by $\alpha=\left(a_{1} \cdots a_{r}\right)$. In general, for any $\emptyset \neq Y \subseteq X_{n}$, the identity permutation on Y is denoted by 1_{Y}. Note that the identity permutation $1_{X_{n}}$ in S_{n} is the unique 1-cycle in S_{n} and denoted also by (1).

Let $\alpha \in T_{n}$ with shift $(\alpha)=\{a\}$ and $a \alpha=b$ for any $a, b \in X_{n}$. In this case, α is denoted by $\alpha=\|a b\|$.
Let $\alpha \in I_{n}$ with $\operatorname{dom}(\alpha)=X_{n} \backslash\left\{a_{r}\right\}$, shift $(\alpha)=\left\{a_{1}, \ldots, a_{r-1}\right\}$ for $r \in \mathbb{Z}^{+} \backslash\{1\}$ and $a_{i} \alpha=a_{i+1}$ for each $1 \leq i \leq r-1$. In this case, α is called a chain of length r (a r-chain) and denoted by [$a_{1} \cdots a_{r}$]. In particular, if $\operatorname{dom}(\alpha)=$ fix $(\alpha)=X \backslash\left\{a_{1}\right\}$, then α is called a 1-chain and denoted by $\left[a_{1}\right]$.

With the notations given above, note the well known facts (see, for example, [5, 7, 11]) that

$$
S_{2}=\left\langle\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\rangle, \quad T_{2}=\left\langle\left(\begin{array}{ll}
1 & 2
\end{array}\right),\|12\|\right\rangle, \quad I_{2}=\left\langle\left(\begin{array}{ll}
1 & 2
\end{array}\right),[1]\right\rangle \text { and } P_{2}=\left\langle\left(\begin{array}{ll}
1 & 2), \|
\end{array}\right) 2 \|,[1]\right\rangle,
$$

and that for $n \geq 3$,

$$
\left.\begin{array}{ll}
S_{n}=\langle(1 & \left.2),\left(\begin{array}{llll}
1 & 2 & \cdots & n
\end{array}\right)\right\rangle, \\
I_{n} & =\left\langle\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & \cdots & n
\end{array}\right),[1]\right\rangle
\end{array} \quad \text { and } \quad P_{n}=\left\langle\left(\begin{array}{llll}
1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & \cdots & n
\end{array}\right),\|12\|\right\rangle, 1\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & \cdots & n
\end{array}\right),\|12\|,[1]\right\rangle .
$$

Moreover,

$$
\begin{aligned}
& \operatorname{rank}\left(S_{n}\right)=\left\{\begin{array}{ll}
1, & n=2 \\
2, & n \geq 3
\end{array}, \quad \operatorname{rank}\left(T_{n}\right)=\operatorname{rank}\left(I_{n}\right)=\left\{\begin{array}{ll}
2, & n=2 \\
3, & n \geq 3
\end{array} \quad\right. \text { and }\right. \\
& \operatorname{rank}\left(P_{n}\right)=\left\{\begin{array}{ll}
3, & n=2 \\
4, & n \geq 3
\end{array} .\right.
\end{aligned}
$$

BUGAY et al./Turk J Math

An element e of a semigroup S is called an idempotent if $e^{2}=e$. The set of all idempotents in any subset U of S is denoted by $E(U)$. It is well known that $\alpha \in P_{n}$ is an idempotent if and only if $\alpha_{\lim (\alpha)}=1_{\operatorname{im}(\alpha)}$, or equivalently, $\operatorname{im}(\alpha)=\operatorname{fix}(\alpha)$. Notice that $E\left(I_{n}\right)$ is a subsemigroup of I_{n}. Let us denote the free semilattice on X_{n} by $\mathcal{S} \mathcal{L}\left(X_{n}\right)$ which is the semigroup of the power set of X_{n} with usual intersection of sets. If we define the map $\Phi: E\left(I_{n}\right) \rightarrow \mathcal{S} \mathcal{L}\left(X_{n}\right)$ by $\alpha \Phi=\operatorname{dom}(\alpha)$ for all $\alpha \in E\left(I_{n}\right)$, then we see that $E\left(I_{n}\right)$ and $\mathcal{S} \mathcal{L}\left(X_{n}\right)$ are isomorphic. Therefore, $\left|E\left(I_{n}\right)\right|=2^{n}$, and moreover, $E\left(I_{n}\right)=\left\langle 1_{X_{n}},[1],[2], \ldots,[n]\right\rangle$. Notice that $\mathcal{S} \mathcal{L}\left(X_{n}\right)$ is generated by $\left\{X_{n}, X_{n 1}, X_{n 2}, \ldots, X_{n n}\right\}$ where $X_{n i}=X_{n} \backslash\{i\}$ for every $1 \leq i \leq n$. For further information on semigroup theory and transformation semigroups, we recommend referring to, for example, $[5,7]$.

Now, we give some notations (similarly defined in [4]) which will be useful throughout this paper. Let S be one of the semigroups in \mathbf{R}. Then let

$$
\begin{aligned}
\Gamma(S) & =\left\{\alpha \in S: \alpha_{\left.\right|_{X_{n} \backslash X_{m}}}=1_{X_{n} \backslash X_{m}}\right\} \\
\Gamma_{m}(S) & =\left\{\alpha \in S: \alpha_{\left.\right|_{X_{m}}}=1_{X_{m}}, \text { and }\left(X_{n} \backslash X_{m}\right) \alpha \subseteq X_{n} \backslash X_{m}\right\},
\end{aligned}
$$

which are clearly subsemigroups of S. Moreover, for any $\alpha \in S, \alpha=\alpha_{(1)} \alpha_{(2)}$ where $\alpha_{(1)}$ and $\alpha_{(2)}$ are the maps defined by

$$
\begin{aligned}
i \alpha_{(1)} & =\left\{\begin{array}{cl}
i \alpha & 1 \leq i \leq m \\
i & m+1 \leq i \leq n
\end{array}\right. \text { and } \\
i \alpha_{(2)} & =\left\{\begin{array}{cl}
i & 1 \leq i \leq m \\
i \alpha & m+1 \leq i \leq n
\end{array}\right.
\end{aligned}
$$

respectively. Finally, for any $\alpha \in P_{m}$, let α^{+}be the map defined by

$$
i \alpha^{+}=\left\{\begin{array}{cl}
i \alpha & 1 \leq i \leq m \\
i & m+1 \leq i \leq n
\end{array}\right.
$$

and, for any $\emptyset \neq U \subseteq P_{m}$, let $U^{+}=\left\{\alpha^{+}: \alpha \in U\right\}$.

3. Ranks of $I S_{(n, m)}^{f}$ and $I I_{(n, m)}^{f}$

It is easy to prove that

$$
I S_{(n, m)}^{f} \cong S_{m} \times E\left(I_{X_{n} \backslash X_{m}}\right) \quad \text { and } \quad I I_{(n, m)}^{f} \cong I_{m} \times E\left(I_{X_{n} \backslash X_{m}}\right)
$$

with the required isomorphism: $\alpha \mapsto\left(\alpha_{\left.\right|_{X_{m}}}, \alpha_{\mid x_{n} \backslash x_{m}}\right)$. Then, since $\left|I_{k}\right|=\sum_{k=0}^{n}\binom{n}{k}^{2} k$! for every $k \in \mathbb{Z}^{+}$, and $I_{X_{n} \backslash X_{m}} \cong I_{n-m}$, we immediately have

$$
\left|I S_{(n, m)}^{f}\right|=m!2^{n-m} \quad \text { and } \quad\left|I I_{(n, m)}^{f}\right|=\left(\sum_{k=0}^{m}\binom{m}{k}^{2} k!\right) 2^{n-m}
$$

For any $\alpha \in E\left(I S_{(n, m)}^{f}\right)$, since $\alpha_{\left.\right|_{X_{m}}}=1_{X_{m}}$ and $\alpha_{\left.\right|_{X_{n} \backslash X_{m}}} \in E\left(I_{X_{n} \backslash X_{m}}\right)$, it follows that $E\left(I S_{(n, m)}^{f}\right) \cong$ $E\left(I_{X_{n} \backslash X_{m}}\right)$. And since $E\left(I_{n-m}\right) \cong E\left(I_{X_{n} \backslash X_{m}}\right)$ trivially, we have

$$
\left|E\left(I S_{(n, m)}^{f}\right)\right|=2^{n-m}
$$

BUGAY et al./Turk J Math

Similarly, we have

$$
\begin{aligned}
\Gamma\left(I S_{(n, m)}^{f}\right) & \cong S_{m} \\
\Gamma\left(I I_{(n, m)}^{f}\right) & \cong I_{m} \text { and } \\
\Gamma_{m}\left(I S_{(n, m)}^{f}\right) & =\Gamma_{m}\left(I I_{(n, m)}^{f}\right) \cong E\left(I_{X_{n} \backslash X_{m}}\right) \cong E\left(I_{n-m}\right)
\end{aligned}
$$

with the required isomorphisms defined as $\alpha \mapsto \alpha_{\left.\right|_{X_{m}}}, \alpha \mapsto \alpha_{\left.\right|_{X_{m}}}$ and $\alpha \mapsto \alpha_{\left.\right|_{X_{n} \backslash X_{m}}}$, respectively.

Lemma 2 For $1 \leq m \leq n-1, I I_{(n, m)}^{f} \backslash I S_{(n, m)}^{f}$ is an ideal of $I I_{(n, m)}^{f}$.
Proof For any $\alpha \in I_{n}$, it is clear that $\alpha \in I I_{(n, m)}^{f} \backslash I S_{(n, m)}^{f}$ if and only if $\alpha_{\left.\right|_{x_{m}}} \in I_{m} \backslash S_{m}$. Furthermore, for any $\gamma \in I I_{(n, m)}^{f}$, since $(\alpha \gamma)_{\left.\right|_{x_{m}}},(\gamma \alpha)_{\left.\right|_{X_{m}}} \in I_{m} \backslash S_{m}$, we have $\alpha \gamma, \gamma \alpha \in I I_{(n, m)}^{f} \backslash I S_{(n, m)}^{f}$, and so $I I_{(n, m)}^{f} \backslash I S_{(n, m)}^{f}$ is an ideal of $I I_{(n, m)}^{f}$.

For any $1 \leq r \leq n$, recall that the 1 -chain in I_{n} with domain $X_{n} \backslash\{r\}$ is denoted by $[r]$. Since we are concerned with both I_{m} and $I_{X_{n} \backslash X_{m}}$, to avoid confusion, we write [1] \quad if $[1] \in I_{m}$ and $[r]_{n, m}$ if $[r] \in I_{X_{n} \backslash X_{m}}$ for $1 \leq m<r \leq n$.

Theorem 1 For $1 \leq m \leq n-1$, $I S_{(n, m)}^{f}=\left\langle\Gamma\left(I S_{(n, m)}^{f}\right) \cup\{[m+1], \ldots,[n]\}\right\rangle$, and moreover, we have

$$
\begin{aligned}
I S_{(n, 1)}^{f} & =\left\langle 1_{X_{n}},[2], \ldots,[n]\right\rangle \\
I S_{(n, 2)}^{f} & =\langle(12),[3], \ldots,[n]\rangle \\
I S_{(n, m)}^{f} & =\langle(12),(12 \ldots m),[m+1], \ldots,[n]\rangle \text { for } m \geq 3
\end{aligned}
$$

Proof Since $\Gamma\left(I S_{(n, m)}^{f}\right) \cong S_{m}$, it is enough to show that $I S_{(n, m)}^{f}=\left\langle\Gamma\left(I S_{(n, m)}^{f}\right) \cup\{[m+1], \ldots,[n]\}\right\rangle$. First, notice that, adapting from the well-known generating set of the $E\left(I_{k}\right)$ for any $k \in \mathbb{Z}^{+}$, we have immediately $E\left(I_{X_{n} \backslash X_{m}}\right)=\left\langle 1_{X_{n} \backslash X_{m}},[m+1]_{n, m}, \ldots,[n]_{n, m}\right\rangle$. Then, since $\Gamma_{m}\left(I S_{(n, m)}^{f}\right) \cong E\left(I_{X_{n} \backslash X_{m}}\right)$, we have

$$
\Gamma_{m}\left(I S_{(n, m)}^{f}\right)=\left\langle 1_{X_{n}},[m+1], \ldots,[n]\right\rangle
$$

For any $\alpha \in I S_{(n, m)}^{f}$, we have $\alpha=\alpha_{(1)} \alpha_{(2)}$, with $\alpha_{(1)} \in \Gamma\left(I S_{(n, m)}^{f}\right)$ and $\alpha_{(2)} \in \Gamma_{m}\left(I S_{(n, m)}^{f}\right)$. Therefore, since $1_{X_{n}} \in \Gamma\left(I S_{(n, m)}^{f}\right), \alpha \in\left\langle\Gamma\left(I S_{(n, m)}^{f}\right) \cup\{[m+1], \ldots,[n]\}\right\rangle$, and so $I S_{(n, m)}^{f}=\left\langle\Gamma\left(I S_{(n, m)}^{f}\right) \cup\{[m+1], \ldots,[n]\}\right\rangle$, as required.

Corollary 1 For $1 \leq m \leq n-1$, we have

$$
\operatorname{rank}\left(I S_{(n, m)}^{f}\right)= \begin{cases}n-m+1 & \text { for } m=1,2 \\ n-m+2 & \text { for } m \geq 3\end{cases}
$$

Proof Let U be an arbitrary generating set of $I S_{(n, m)}^{f}$. For any $1 \leq i \leq n-m$, since $[m+i] \in$ $I S_{(n, m)}^{f}=\langle U\rangle$, there exist $\sigma_{1}, \ldots, \sigma_{k} \in U\left(k \in \mathbb{Z}^{+}\right)$such that $[m+i]=\sigma_{1} \cdots \sigma_{k}$. Moreover, since $|\operatorname{im}(\alpha \beta)| \leq \min \{|\operatorname{im}(\alpha)|,|\operatorname{im}(\beta)|\}$ for all $\alpha, \beta \in P_{n}$, we have $\sigma_{1}, \ldots, \sigma_{k} \in S_{n} \cup K_{n-1}$ where

$$
K_{n-1}=\left\{\alpha \in I S_{(n, m)}^{f}:|\operatorname{dom}(\alpha)|=|\operatorname{im}(\alpha)|=n-1\right\}
$$

BUGAY et al./Turk J Math

and there exists at least one $1 \leq j \leq k$ such that $\sigma_{j} \in K_{n-1}$. Without loss of generality, suppose that $\left|\operatorname{dom}\left(\sigma_{l}\right)\right|=n$ for each $1 \leq l \leq j-1$. Since $\operatorname{dom}(\alpha \beta) \subseteq \operatorname{dom}(\alpha)$ for all $\alpha, \beta \in P_{n}$, and since $[m+i], \sigma_{j} \in K_{n-1}$, it follows that $\operatorname{dom}\left(\sigma_{j}\right)=\operatorname{dom}([m+i])$. That is, for each $1 \leq i \leq n-m$, there exists $\sigma_{j(i)} \in U$ such that $\operatorname{dom}\left(\sigma_{j(i)}\right)=\operatorname{dom}([m+i])=X_{n} \backslash\{m+i\}$. Moreover, since $\left|\operatorname{dom}\left(\sigma_{j(i)}\right)\right|=n-1$ for each $1 \leq i \leq n-m$, we must have $U \cap S_{n} \neq \emptyset$. For $m=1$ or $m=2$ the result is clear from Theorem 1 . For $m \geq 3$, since

$$
I S_{(n, m)}^{f} \backslash \Gamma\left(I S_{(n, m)}^{f}\right)=\left\{\alpha \in I S_{(n, m)}^{f}: \operatorname{dom}(\alpha) \neq X_{n}\right\}
$$

is an ideal of $I S_{(n, m)}^{f}$, and since $\Gamma\left(I S_{(n, m)}^{f}\right) \cong S_{m}$, it follows from Lemma 1 that $\operatorname{rank}\left(I S_{(n, m)}^{f}\right) \geq n-m+2$, and so the result follows from Theorem 1.

Theorem 2 For $1 \leq m \leq n-1$, we have $I I_{(n, m)}^{f}=\left\langle I S_{(n, m)}^{f} \cup\{[1]\}\right\rangle$.
Proof First, recall that $I_{m}=\left\langle S_{m} \cup\left\{[1]_{m}\right\}\right\rangle$. Then, since $\Gamma\left(I I_{(n, m)}^{f}\right) \cong I_{m}$, similarly we have $\Gamma\left(I I_{(n, m)}^{f}\right)=$ $\left\langle S_{m}^{+} \cup\{[1]\}\right\rangle$, where S_{m}^{+}is defined as in the section Preliminaries. For any $\alpha \in I I_{(n, m)}^{f}$, we have $\alpha=\alpha_{(1)} \alpha_{(2)}$, with $\alpha_{(1)} \in \Gamma\left(I I_{(n, m)}^{f}\right)$ and $\alpha_{(2)} \in I S_{(n, m)}^{f}$. Therefore, since $S_{m}^{+} \subseteq I S_{(n, m)}^{f}$, we have $\alpha \in\left\langle I S_{(n, m)}^{f} \cup\{[1]\}\right\rangle$, and so $I I_{(n, m)}^{f}=\left\langle I S_{(n, m)}^{f} \cup\{[1]\}\right\rangle$, as required.

Corollary 2 For $1 \leq m \leq n-1$, we have

$$
\operatorname{rank}\left(I I_{(n, m)}^{f}\right)= \begin{cases}n-m+2 & \text { for } m=1,2 \\ n-m+3 & \text { for } m \geq 3\end{cases}
$$

Proof The result follows from Lemma 1, Lemma 2, Corollary 1, and Theorem 2.
4. Ranks of $P S_{(n, m)}^{f}, P T_{(n, m)}^{f}, P I_{(n, m)}^{f}$ and $P P_{(n, m)}^{f}$

First, notice that, for each $V_{m} \in\left\{S_{m}, T_{m}, I_{m}, P_{m}\right\}$,

$$
\begin{aligned}
\Gamma\left(P V_{(n, m)}^{f}\right) & \cong V_{m} \\
\Gamma_{m}\left(P V_{(n, m)}^{f}\right) & \cong E\left(I_{X_{n} \backslash X_{m}}\right)
\end{aligned}
$$

with the required isomorphisms $\alpha \mapsto \alpha_{\left.\right|_{X_{m}}}$ and $\alpha \mapsto \alpha_{\left.\right|_{X_{n} \backslash X_{m}}}$, respectively. Now, we state a lemma which can be proved easily with the isomorphism defined by $\alpha \mapsto\left(\alpha_{X_{X_{m}}}, \alpha_{\left.\right|_{X_{n} \backslash X_{m}}}\right)$.

Lemma 3 For $1 \leq m \leq n-1$,

$$
\begin{aligned}
& P S_{(n, m)}^{f}=I S_{(n, m)}^{f} \cong S_{m} \times E\left(I_{n-m}\right) \\
& P T_{(n, 1)}^{f}=P S_{(n, 1)}^{f}=I S_{(n, 1)}^{f} \cong S_{1} \times E\left(I_{n-1}\right) \cong E\left(I_{n-1}\right) \\
& P T_{(n, m)}^{f} \cong T_{m} \times E\left(I_{n-m}\right) \quad \text { for } m \geq 2 \\
& P I_{(n, m)}^{f}=I I_{(n, m)}^{f} \cong I_{m} \times E\left(I_{n-m}\right) \\
& P P_{(n, 1)}^{f}=P I_{(n, 1)}^{f}=I I_{(n, 1)}^{f} \cong I_{1} \times E\left(I_{n-1}\right) \text { and } \\
& P P_{(n, m)}^{f} \cong P_{m} \times E\left(I_{n-m)}\right) \quad \text { for } m \geq 2
\end{aligned}
$$

BUGAY et al./Turk J Math

For each $1 \leq m \leq n-1$, since the ranks of $I S_{(n, m)}^{f}$ and $I I_{(n, m)}^{f}$ are given in Corollaries 1 and 2, respectively, we consider only the subsemigroups $P T_{(n, m)}^{f}$ and $P P_{(n, m)}^{f}$ for $2 \leq m \leq n-1$.

Theorem 3 For $2 \leq m \leq n-1$, we have

$$
\begin{aligned}
P T_{(n, m)}^{f} & =\left\langle P S_{(n, m)}^{f} \cup\{\|12\|\}\right\rangle \quad \text { and } \\
P P_{(n, m)}^{f} & =\left\langle P T_{(n, m)}^{f} \cup\{[1]\}\right\rangle=\left\langle P S_{(n, m)}^{f} \cup\{\|12\|,[1]\}\right\rangle .
\end{aligned}
$$

Proof First, recall that $T_{m}=\left\langle S_{m} \cup\left\{\|12\|_{m}\right\}\right\rangle$ and $P_{m}=\left\langle T_{m} \cup\left\{[1]_{m}\right\}\right\rangle$. Since $\Gamma\left(P T_{(n, m)}^{f}\right) \cong T_{m}$ and $\Gamma\left(P P_{(n, m)}^{f}\right) \cong P_{m}$, similarly, we have

$$
\Gamma\left(P T_{(n, m)}^{f}\right)=\left\langle S_{m}^{+} \cup\{\|12\|\}\right\rangle \quad \text { and } \quad \Gamma\left(P P_{(n, m)}^{f}\right)=\left\langle T_{m}^{+} \cup\{[1]\}\right\rangle
$$

For any $\alpha \in P T_{(n, m)}^{f}$, we have $\alpha=\alpha_{(1)} \alpha_{(2)}$, with $\alpha_{(1)} \in \Gamma\left(P T_{(n, m)}^{f}\right)$ and $\alpha_{(2)} \in P S_{(n, m)}^{f}$. Since $S_{m}^{+} \subseteq P S_{(n, m)}^{f}$, it follows that $\alpha \in\left\langle P S_{(n, m)}^{f} \cup\{\|12\|\}\right\rangle$, and so $P T_{(n, m)}^{f}=\left\langle P S_{(n, m)}^{f} \cup\{\|12\|\}\right\rangle$.

For any $\alpha \in P P_{(n, m)}^{f}$, we have $\alpha=\alpha_{(1)} \alpha_{(2)}$, with $\alpha_{(1)} \in \Gamma\left(P P_{(n, m)}^{f}\right)$ and $\alpha_{(2)} \in P T_{(n, m)}^{f}$. Since $T_{m}^{+} \subseteq P T_{(n, m)}^{f}$, it follows that $\alpha \in\left\langle P T_{(n, m)}^{f} \cup\{[1]\}\right\rangle$, and so $P P_{(n, m)}^{f}=\left\langle P T_{(n, m)}^{f} \cup\{[1]\}\right\rangle$.

Lemma 4 For $1 \leq m \leq n-1$,
(i) $P T_{(n, m)}^{f} \backslash P S_{(n, m)}^{f}$ is an ideal of $P T_{(n, m)}^{f}$ and
(ii) $P P_{(n, m)}^{f} \backslash P S_{(n, m)}^{f}$ is an ideal of $P P_{(n, m)}^{f}$.

Proof It is a routine matter to prove as in Lemma 2.

Corollary 3 For $2 \leq m \leq n-1$, we have

$$
\operatorname{rank}\left(P T_{(n, m)}^{f}\right)= \begin{cases}n-m+2 & \text { for } m=2 \\ n-m+3 & \text { for } m \geq 3\end{cases}
$$

Proof The result follows from Lemma 1, Lemma $4(i)$, the fact $P S_{(n, m)}^{f}=I S_{(n, m)}^{f}$, Corollary 1 and Theorem 3.

Recall that, for any $\alpha \in P_{n}, \operatorname{ker}(\alpha)=\left\{(x, y) \in X_{n} \times X_{n}: x, y \in \operatorname{dom}(\alpha)\right.$ and $x \alpha=y \alpha$ or $\left.x, y \notin \operatorname{dom}(\alpha)\right\}$ is an equivalence relation on X_{n} and the equivalence classes of $\operatorname{ker}(\alpha)$ are all different preimage sets of elements in $\operatorname{im}(\alpha)$ together with $X_{n} \backslash \operatorname{dom}(\alpha)$ which form a partition of X_{n}. Also, recall that, $\operatorname{ker}(\alpha) \subseteq \operatorname{ker}(\alpha \beta)$ for any $\alpha, \beta \in P_{n}$. It is easy to see that, for $\alpha \in T_{n}$, if $|\operatorname{im}(\alpha)|=n-1$, then there exist $i \neq j \in X_{n}$ such that $\operatorname{ker}(\alpha)$ is the equivalence relation on X_{n} generated by $\{(i, j)\}$ which is denoted by $\operatorname{ker}(\alpha)=\{(i, j)\}^{e}$.

Theorem 4 For $2 \leq m \leq n-1$, if U is a generating set of $P P_{(n, m)}^{f}$, then

BUGAY et al./Turk J Math

(i) U must contain an arbitrary generating set of $P S_{(n, m)}^{f}$,
(ii) there exists an element $\alpha \in U \cap\left(P P_{(n, m)}^{f} \backslash P T_{(n, m)}^{f}\right)$ such that $|\operatorname{dom}(\alpha)|=|\operatorname{im}(\alpha)|=n-1$,
(iii) there exist an element $\beta \in U \cap\left(P T_{(n, m)}^{f} \backslash P S_{(n, m)}^{f}\right)$ and two elements $1 \leq i \neq j \leq m$ such that $\operatorname{ker}(\beta)=\{i, j\}^{e}$.

Proof For $1 \leq m \leq n-1$, let $\emptyset \neq U \subseteq P P_{(n, m)}^{f}$ be a generating set of $P P_{(n, m)}^{f}$.
(i) From Lemmas 1 and 4 (ii), we immediately conclude that U must contain an arbitrary generating set of $P S_{(n, m)}^{f}$.
(ii) Consider the map $[i] \in P P_{(n, m)}^{f}$ for any $1 \leq i \leq m$. Since U is a generating set of $P P_{(n, m)}^{f}$, then there exist $\sigma_{1}, \ldots, \sigma_{k} \in U\left(k \in \mathbb{Z}^{+}\right)$such that

$$
[i]=\sigma_{1} \cdots \sigma_{k}
$$

Since $|\operatorname{dom}([i])|=n-1$ and since $\operatorname{dom}(\psi \theta)=(\operatorname{im}(\psi) \cap \operatorname{dom}(\theta)) \psi^{-1}$ for any $\psi, \theta \in P_{n}$, there exists at least one $1 \leq t \leq k$ such that $\left|\operatorname{dom}\left(\sigma_{t}\right)\right|=n-1$. Notice also that, $\left|\operatorname{im}\left(\sigma_{j}\right)\right| \geq n-1$ for each $1 \leq j \leq k$ since $|\operatorname{im}([i])|=n-1$ and $\operatorname{im}([i])=\operatorname{im}\left(\sigma_{1} \cdots \sigma_{k}\right)$, and so $\left|\operatorname{im}\left(\sigma_{t}\right)\right|=n-1$. Therefore, there exists at least one element $\alpha \in U \cap\left(P P_{(n, m)}^{f} \backslash P T_{(n, m)}^{f}\right)$ such that $|\operatorname{dom}(\alpha)|=|\operatorname{im}(\alpha)|=n-1$.
(iii) Consider the map $\psi \in P T_{(n, m)}^{f} \backslash P S_{(n, m)}^{f}$ with $\operatorname{ker}(\psi)=\left\{i_{0}, j_{0}\right\}^{e}$ for any two elements $1 \leq i_{0} \neq$ $j_{0} \leq m$. Then there exist $\omega_{1}, \ldots, \omega_{l} \in U\left(l \in \mathbb{Z}^{+}\right)$such that

$$
\psi=\omega_{1} \cdots \omega_{l}
$$

and $n-1 \leq\left|\operatorname{im}\left(\omega_{r}\right)\right| \leq n$ for each $1 \leq r \leq l$. Since $\operatorname{ker}(\omega) \subseteq \operatorname{ker}(\omega \theta)$ for any $\omega, \theta \in P_{n}, \operatorname{ker}\left(\omega_{1}\right) \subseteq$ $\operatorname{ker}\left(\omega_{1} \cdots \omega_{l}\right)=\operatorname{ker}(\psi)=\left\{i_{0}, j_{0}\right\}^{e}$ and $n-1 \leq\left|\operatorname{im}\left(\omega_{r}\right)\right| \leq n$ for each $1 \leq r \leq l$, we conclude that there exists $1 \leq s \leq l$ and $1 \leq i_{s} \neq j_{s} \leq n$ such that $\omega_{s} \in U \cap\left(P T_{(n, m)}^{f} \backslash P S_{(n, m)}^{f}\right)$ and that $\operatorname{ker}\left(\omega_{s}\right)=\left\{i_{s}, j_{s}\right\}^{e}$. Without loss of generality we can suppose that ω_{s} is the first element in the sequence $\omega_{1}, \ldots, \omega_{l}$ satisfying this condition. In this case also notice that $\omega_{1}, \ldots, \omega_{s-1}$ must be in $P S_{(n, m)}^{f}, i_{0}\left(\omega_{1} \cdots \omega_{s-1}\right) \neq j_{0}\left(\omega_{1} \cdots \omega_{s-1}\right), i_{s} \neq j_{s}$, and that

$$
\left\{i\left(\omega_{1} \cdots \omega_{s-1}\right), j\left(\omega_{1} \cdots \omega_{s-1}\right)\right\}=\left\{i_{s}, j_{s}\right\}
$$

Since $X_{m} \psi \subseteq X_{m}$ then we have $i_{s}, j_{s} \in X_{m}$, and so there exist an element $\beta \in U \cap\left(P T_{(n, m)}^{f} \backslash P S_{(n, m)}^{f}\right)$ and two elements $1 \leq i \neq j \leq m$ such that $\operatorname{ker}(\beta)=\{i, j\}^{e}$.

Corollary 4 For $2 \leq m \leq n-1$, we have

$$
\operatorname{rank}\left(P P_{(n, m)}^{f}\right)= \begin{cases}n-m+3 & \text { for } m=2 \\ n-m+4 & \text { for } m \geq 3\end{cases}
$$

Proof The result follows from the fact that $P S_{(n, m)}^{f}=I S_{(n, m)}^{f}$, Corollary 1 and Theorems 3 and 4.

BUGAY et al./Turk J Math

References

[1] Billhardt B, Sanwong J, Sommanee W. Some properties of Umar semigroups: isomorphism theorems, ranks and maximal inverse subsemigroups. Semigroup Forum 2018; 9 (6): 581-595. https://doi.org/10.1007/s00233-018-9933-6
[2] Bugay L, Ayık H. Generating sets of certain finite subsemigroups of monotone partial bijections. Turkish Journal of Mathematics 2018; 42 (5): 2270-2278. https://doi.org/10.3906/mat-1710-86
[3] Bugay L, Kelekci O. On transformations of index 1. Turkish Journal of Mathematics 2014; 38 (3): 419-425. https://doi.org/10.3906/mat-1309-60
[4] Bugay L, Sönmez R, Ayık H. Ranks of certain semigroups of transformations whose restrictions are elements of a given semigroup. Bulletin of the Malaysian Mathematical Sciences Society 2023; 46 (98) https://doi.org/10.1007/s40840-023-01491-5
[5] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. Springer-Verlag, London, 2009.
[6] Honyam P, Sanwong J. Semigroup of transformations with invariant set. Journal of the Korean Mathematical Society 2011; 48: 289-300. https://doi.org/10.4134/JKMS.2011.48.2.289
[7] Howie JM. Fundamentals of Semigroup Theory. Oxford University Press, New York, 1995.
[8] Howie JM, McFadden RB. Idempotent rank in finite full transformation semigroups. Proceedings of the Royal Society of Edinburgh Section A 1990; 114 (3-4): 161-167. https://doi.org/10.1017/S0308210500024355
[9] Konieczny J. Semigroups of transformations whose restrictions belong to a given semigroup, Semigroup Forum 2022; 104: 109-124. https://doi.org/10.1007/s00233-021-10227-5
[10] Laysirikul E. Semigroups of full transformations with the restriction on the fixed set is bijective. Thai Journal of Mathematics 2016; 14 (2): 497-503.
[11] Lipscomb S. Symmetric Inverse Semigroups. Mathematical Surveys, vol. 46. American Mathematical Society, Providence, 1996.
[12] Magill Jr. KD. Subsemigroups of S(X). Mathematica Japonica 1966; 11: 109-115.
[13] Nenthein S, Youngkhong P, Kemprasit Y. Regular elements of some transformation semigroups. Pure Mathematics and Applications 2005; 16 (3): 307-314.
[14] Sommanee W. Some properties of the semigroup $P G_{Y}(X)$: Green's relations, ideals, isomorphism theorems and ranks. Turkish Journal of Mathematics 2021; 45: 1789-1800. https://doi.org/10.3906/mat-2104-22
[15] Symons JSV. Some results concerning a transformation semigroup. Journal of the Australian Mathematical Society 1975; 19A: 413-425. https://doi.org/10.1017/S1446788700034455
[16] Toker K, Ayık H. On the rank of transformation semigroup $T_{(n, m)}$. Turkish Journal of Mathematics 2018; 42: 1970-1977. https://doi.org/10.3906/mat-1710-59
[17] Zhao P, Fernandes VH. The ranks of ideals in various transformation monoids. Communications in Algebra 2015; 43: 674-692. https://doi.org/10.1080/00927872.2013.847946

[^0]: *Correspondence: ltanguler@cu.edu.tr
 2010 AMS Mathematics Subject Classification: 20M20

